PHYSICAL / INORGANIC CHEMISTRY

DPP No. 2

Total Marks: 41

Max. Time: 45 min.

Topic: Solution Colligative Properties

Type of Questions M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.3 (3 marks, 3 min.) [9, 9]

Multiple choice objective ('-1' negative marking) Q.4 to Q.7 (4 marks, 4 min.) [16, 16]

Subjective Questions ('-1' negative marking) Q.8 to Q.9 (4 marks, 5 min.) [8, 10]

Match the Following (no negative marking) Q. 10 (8 marks, 10 min.) [8, 10]

- 1. A certain quantity of a gas occupied 100 ml when collected over water at 15°C and 750 mm pressure. It occupies 91.9 ml in dry state at NTP. Find the V.P. of water at 15°C
 - (A) 20 mm
- (B) 13.2 mm
- (C) 18 mm
- (D) none
- 2. Mixture of volatile components A and B has total vapour pressure (in Torr) $p = 254 119 x_A$, where x_A is mole fraction of A in mixture. Hence p_A^0 and p_B^0 are (in Torr)
 - (A) 254, 119
- (B) 119, 254
- (C) 135, 254
- (D) 119, 373
- Two liquids X and Y are perfectly immiscible. If X and Y have molecular masses in ratio 1:2, the total vapour pressure of a mixture of X and Y prepared in weight ratio 2:3 should be $(P_X^0 = 400 \text{ torr}, P_Y^0 = 200 \text{ torr})$
 - (A) 300 torr
- (B) 466.7 torr
- (C) 600 torr
- (D) 700 torr

- **4*.** Which of the following are true for ideal solutions :
 - (A) $\Delta V_{mix} = 0$
- (B) $\Delta H_{mix} = 0$
- (C) $\Delta S_{mix} = 0$
- (D) $\Delta G_{mix} = 0$
- (E) Raoult's law is obeyed for entire concentration range and temperatures.
- 5*. Two liquids A and B form an ideal solution. The solution has a vapor pressure of 700 Torr at 80°C. It is distilled till $2/3^{rd}$ of the solution is collected as condensate. The composition of the condensate is $x'_A = 0.75$ and that of the residue is $x''_A = 0.30$. If the vapor pressure of the residue at 80°C is 600 Torr, which of the following is/are true?
 - (A) The composition of the original liquid was $x_A = 0.6$.
- (B) $P_A^0 = \frac{2500}{3}$ Torr.
- (C) The composition of the original liquid was $x_A = 0.4$.
- (D) $P_B^0 = 500 \text{ Torr.}$

6*. 1 M of glucose ($C_E H_{12} O_E$) solution (density = 1.18 g/ml) is equivalent to which of the following solution

(A) % w/w = 18% (solution)

(B) 180 g solute per litre solution

(C) % w/v = 18% (solution)

(D) 1 molal solution

7*. Which of the following molarity values of ions in a aqueous solution of 5.85 % w/v NaCl, 5.55% w/v CaCl₂

and 6% w/v NaOH are correct [Na = 23, Cl = 35.5 , Ca = 40, O = 16]

(A) $[CI^{-1}] = 2M$

(B) $[Na^+] = 1M$

(C) $[Ca^{2+}] = 0.5 M$

(D) $[OH^{-}] = 1.5 M$

8. Three vessel X, Y and Z are of capacity 1.5, 2.5 and 4 litre respectively. Vessel X contains 1.0 gm of N₂ gas at a pressure of 400 mm of Hg, vessel Y contains 1 gm of gas at 208 mm of Hg and vessel Z contains a gas at 160 mm of Hg pressure. calculate the pressure in vessel Z in mm of Hg if gases of X and Y are completely transferred to vessel Z. Assume that all vessels are at same temperature before and after the transfer.

9. If 20 ml of 0.5 M Na₂SO₄ is mixed with 50 ml of 0.2 M H₂SO₄ & 30 ml of 0.4 M Al₂(SO₄)₃ solution, calculate. [Na⁺], [H⁺], [SO₄²⁻], [Al³⁺]. Assuming 100% dissociation.

10. Column (II) Column (II)

(A) 50 ml of 3M HCl + 150 ml of 1M FeCl₃

(p) 1.85 m

(B) mole fraction of NaCl in aqueous solution

of NaCl is 0.1 then molality of the solution is

(q) $[CI^-] = 3 M$

(C) 10%(w/w) propanol (C₃H₇OH) solution has molality

(r) $[H^+] = 0.75 \text{ M}$

(D) 10.95% (w/v) HCI

(s) 6.1 m

Answer Key

DPP No. # 2

1. (B)

2.

(C)

3.

'. (ABE)

5*. (ABD)

6

(BCD)

7*.

(C) (ACD)

8.

440 mm of Hg.

10. [A-q, r]; [B-s]; [C-p]; [D-q].

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #2

1. For gas,

$$\begin{split} \frac{P_1 V_1}{T_1} &= \frac{P_2 V_2}{T_2} \\ \frac{760 \times 91.9}{273} &= \frac{P_2 \times 100}{288} \quad \Rightarrow \qquad P_2 = 736.8 \text{ mm of Hg} \\ P_{\text{total}} &= P_{2, \text{gas}} + \text{V.P.} \qquad \Rightarrow \qquad \text{V.P.} = 750 - 736.8 = 13.2 \text{ mm of Hg} \end{split}$$

2.
$$P = X_A P_A^0 + X_B P_B^0 = (P_A^0 - P_B^0) X_A + P_B^0$$

So $P_B^0 = 254$
 $P_A^0 - P_B^0 = -119$ $P_A^0 = 135$

- 3. For immiscible solution $= P_T = P_A^{\circ} + P_B^{\circ}$ = 400 + 200 = 600.
- 4. For ideal solution, $\Delta V_{mix} = 0$, $\Delta H_{mix} = 0$, $\Delta S_{mix} = + ve$, $\Delta G_{mix} = -ve$,
- 5. $x_A P_A^{\circ} + x_B P_B^{\circ} = 700$...(i) $x_A^{\prime\prime\prime} P_A^{\circ} + x_B^{\prime\prime\prime} P_B^{\circ} = 0.30 P_A^{\circ} + 0.70 P_B^{\circ} = 600$...(ii) if moles of A & B initially are x & y then

$$x = 0.75 \times \frac{2}{3} (x + y) + 0.30 \times \frac{1}{3} (x + y)$$

&
$$x_A = \frac{x}{x+y}$$
 or $x_B = \frac{y}{x+y}$

Solving gives

$$x_A = 0.6$$
, $x_B = 0.4$, $P_A^\circ = \frac{2500}{3}$ tom & $P_B^\circ = 500$ tom.

1 mole glucose is present in 1000 ml solution
 180 gm glucose is present in 1000 x 1.18 gm solution
 180 gm glucose is present in 1180 – 180 gm solvent

molality =
$$\frac{1}{1000} \times 1000 = 1$$

% w/v = $\frac{180}{1000} \times 100 = 18$
% w/w = $\frac{180}{1180} \times 100 = 15.25$

Only single solution have all these means 100 ml solution have 5.85 gm NaCl = 0.1 mole and 5.55 gm CaCl₂ = 0.05 mole and 6 gm NaOH = 0.15 mole

$$[CI^{-}] = \frac{(0.1+0.05\times2)\times1000}{100} = 2 \text{ M} \qquad \Rightarrow \qquad [Na^{+}] = \frac{(0.1+0.15)\times1000}{100} = 2.5 \text{ M}$$

$$[Ca^{2+}] = \frac{0.05}{100} \times 1000 = 0.5 \text{ M} \qquad \Rightarrow \qquad [OH^{-}] = 1.5 \text{ M}$$

- 8. For vessel X $400 \times 1.5 = P_x \times 4 \implies P_x = 150 \text{ mm Hg}$ For vessel Y, $208 \times 2.5 = 4 \times P_y = 130 \text{ mm of Hg}$ Total pressure $P_T = 150 + 130 + 160$ = 440 mm of Hg.
- 9. Millimoles of $Na_2SO_4 = 20 \times 0.5 = 10$ Millimoles of $H_2SO_4 = 50 \times 0.2 = 10$ Millimoles of $Al_2(SO_4)_3 = 30 \times 0.4 = 12$ \Rightarrow Millimoles of $Na^+ = 20$ Millimoles of $H^+ = 20$ Millimoles of $Al^{3+} = 24$ Millimoles of $SO_4^{2-} = 10 + 10 + 36 = 56$ Total volume = 20 + 50 + 30 = 100 ml

Total volume = 20 + 50 + 30 = 100 m

$$[Na^{+}] = \frac{20}{100} = 0.2 \text{ M}$$

$$[H^{+}] = \frac{20}{100} = 0.2 \text{ M}$$

$$[AI^{3+}] = \frac{24}{100} = 0.24 \text{ M}$$

$$[SO_{4}^{2-}] = \frac{56}{100} = 0.56 \text{ M}$$

10. (a)
$$[CF] = \frac{50 \times 3 + 150 \times 1 \times 3}{200} = \frac{600}{200} = 3 \text{ M & } [H^+] = \frac{50 \times 3}{200} = 0.75 \text{ M}$$

(b) Molality = $\frac{0.1}{0.9 \times 18} \times 1000 = 6.17 \text{ m}$

(c) Molality =
$$\frac{\frac{10}{60}}{90} \times 1000 = 1.85 \text{ m}$$

(d) Molarity of HCI =
$$\frac{10.95}{36.5}$$
 × 1000 = 3 M \Rightarrow [H*] = [CI-] = 3M

